Overview of development of arc-type ladle heating system

1. Development setup

Toyota Motor Corporation Location: 1 Toyota-cho, Toyota City, Aichi Prefecture, Japan President & Representative Director: Akio Toyoda Tokuden Co., Ltd. Location: 2-2-27 Showa-dori, Amagasaki City, Hyogo Prefecture, Japan President and Representative Director: Yoshiharu Minagawa Chubu Electric Power Co., Inc. Location: 1 Higashi-Shincho, Higashi-ku, Nagoya City, Aichi Prefecture, Japan President & Director: Akihisa Mizuno **[Cooperation in field tests provided by]** Aisin Takaoka, Co., Ltd.

Location: 1 Tennoh Takaoka-Shinmachi, Toyota City, Aichi Prefecture, Japan President: Toshiyuki Ishikawa

2. System specifications

Exterior view of system (system appearance when installed)

System specifications

Item		Unit	System that has been developed	System that can be ordered			
Ladle capacity		kg	300	100 to 3,000			
Power supp	oly	kW	61	61 to 250			
Heating control method		-	Atmospheric temperature feedback control (PID control)				
Installation (including ladle and p	footprint power supply)	Width × depth × height (mm)	2,000 × 2,000 × 2,700	2,000 × 2,000 × 2,700 to 3,500 × 4,000 × 6,000			
Carbon electrodes		Outside diameter × height (mm)	$\varphi 80 imes 1,800$	$\varphi 50 \times 740$ to $\varphi 100 \times 2,700$			
Utilities	Electricity	-	AC 200V, 3-phase	AC 200 to 400V, 3-phase			
	Nitrogen	Liters/minute	25	25 to 200			

Note: Specifications are approximate and will differ depending on the shape of the ladle and heating capacity.

3. Key development points

(1) Ladle application

The ladle is used to transfer the molten iron or aluminum from the melting furnace to the pouring unit/molding line. In order to prevent any lowering of the temperature of the molten metal, which can cause quality problems, the refractory materials on the inside walls of the ladle must be preheated ahead of time.

(2) Conventional system (gas burner-type)

Heating with gas burners results in a high exhaust loss so the effective heat remains at 13%, and large quantities of oxide residues are generated as well.

(3) Developed system (arc-type)

Arcs are generated by applying DC current to carbon electrodes, and the ladle is heated by radiant heat. By installing a heat-insulated cover and applying arc heat, the effective heat ratio is increased from the 13% of the conventional system to 70%, significantly reducing the energy consumption required for the heating.

4. Overview of field test results

Where tested	Head office and Takaoka Plant, Aisin Takaoka Co., Ltd.						Akechi Plant, Toyota Motor Corporation					
Application	Ladle preheating						Ladle drying					
	Energy consumption			Running costs		Energy consumption		Running costs				
Evalua tion results	100%		100%		100%		100%					
	80% -		▲91%	80% -		▲ 60%	80% -		▲95%	80% -		▲51%
	60% -			60% -	Gas		60% -			60% -	Gas	V Nitrogen
	40% -			40% -		Nitrogen	40% -			40% -		
	20% -		\downarrow	20% -		Electrodes	20% -			20% -		Electrodes
	0% Conventional Developed system system		0% Conventional Developed system		0% Developed Conventional System		0% Conventional Developed system					
Reduction rates	- 91%		- 60%		- 95%		- 51%					